Approximation by Polynomials with Nonnegative Coefficients and the Spectral Theory of Positive Operators

نویسندگان

  • ROGER D. NUSSBAUM
  • BERTRAM WALSH
  • Helmut H. Schaefer
چکیده

For Σ a compact subset of C symmetric with respect to conjugation and f : Σ → C a continuous function, we obtain sharp conditions on f and Σ that insure that f can be approximated uniformly on Σ by polynomials with nonnegative coefficients. For X a real Banach space, K ⊆ X a closed but not necessarily normal cone with K −K = X, and A : X → X a bounded linear operator with A[K] ⊆ K, we use these approximation theorems to investigate when the spectral radius r(A) of A belongs to its spectrum σ(A). A special case of our results is that if X is a Hilbert space, A is normal and the 1-dimensional Lebesgue measure of σ(i(A − A∗)) is zero, then r(A) ∈ σ(A). However, we also give an example of a normal operator A = −U − αI (where U is unitary and α > 0) for which A[K] ⊆ K and r(A) / ∈ σ(A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

متن کامل

استخراج ویژگی در تصاویر ابرطیفی به کمک برازش منحنی با توابع گویا

In this paper, with due respect to the original data and based on the extraction of new features by smaller dimensions, a new feature reduction technique is proposed for Hyper-Spectral data classification. For each pixel of a Hyper-Spectral image, a specific rational function approximation is developed to fit its own spectral response curve (SRC) and the coefficients of the numerator and denomi...

متن کامل

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998